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LEmER TO THE EDITOR 

Path integral fermionization of two-dimensional a-models 
related to the homogeneous ones 

A V Bratchikov 
Krasnodar Polytechnic Institute, 2 Moskovskaya Street, Krarnodar 350072, USSR 

Received 29 January 1991 

Abstracl. The generalization of the Polyakov-Wiegmann method of fermionization to a 
two-dimensional v-model related to the one on an arbitrary homogeneous space G/H is 
presented. The generating functional for correlation functions of the model is expressed 
in the fermion path integral variables. The corresponding fermionic model is a constrained 
gauge model of a four-fermion interaction. 

The two-dimensional u-model on the homogeneous space G/H of a simple compact 
Lie group G is defined by the action [l] . 

S( U) = 1 d2x(tA,L~L") (la) 

where Lb, i = I , .  . . , dim(G/H), are given by the decomposition U-'a,U = 
L p ,  + L:ro, U = U ( x )  E G, and A = (A,) is an inversible H-invariant matrix: 

J 

fbk = tr([r., rklrj) 
The r, are generators of G in an irreducible unitary representation, satisfying the 
conditions tr(rJ.,) = 0, where r,, a = dim(G/H)+ 1,. . . , dim G, are generators of a 
group H c C  in the same representation. The action (1) is invariant under the global 
Lh h n - A  "..A I_..I ~ .A..!-+ ha-2 +-m..of~--o+:-..a 
I = l L - l l * l l u  * L L U  &nus= L 1 & " L - ' L a " U  L l P l l J l V L l l l P L l Y l l J  

U ( x )  + g U ( x ) h - ' x  (2) 

where g E G, h ( x )  E H. 

in the particular case H = 1, A - 1, constrained as [3] 
Using the Polyakov and Wiegmann method [Z], one can show that the model ( I )  

U(X+,  0) = U ( 0 ,  x-) = 1 (3) 
is equivalent to the infinite flavour limit of the G-invariant Thirring model. In this 
article we consider the action (1) in the general case. Its fermionization encounters 
the same difficulty as that of the principal chiral model [3,4]. However, adding the 
constraints (3) one can apply the approach of [2,3]. 
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This new model turns out to be equivalent to the constrained fermionic one which 
is defined by the action 

S ( $ ,  6, A:)= d2x(i6,d$'+AgJj~J~+iA;J~) (4) I 
where J-,. = $,yNr&< /= I , .  . . , N, a = 1,. . . , dim G. The matrix A - '  = ( A g )  is the 
inverse of A, and A: are Lagrange multipliers. A generalization of the method of [2] 
enables us to express in the fermion path integral variables not only the vacuum-to- 
vacuum functional integral of the model ( I ) ,  (3 ) ,  but also the generating functional 
for correlation functions. 

Following Polyakov and Wiegmann [2], we first give arguments explaining the 
connection between ( I )  and (4) on a qualitative level. In order to eliminate the quartic 
interaction, it is convenient to introduce an auxiliary field A: and replace the action 
(4) by the new one 

S ( @ ,  6, A,)= I d2~(i&,0$f+fAgA~Aj') (5 )  

where 0, =a,+ A,, A,. = A",-, n = I , .  . . , dim G. Integrating over fermions, we have 

S(A,) = d2x(fAgA:A'") -iN tr log 0. ( 6 )  I 
Due to the gauge invariance, tr log 0 depends effectively on the field strength F,. = 
J,A,-J~,+[A,,A,]. Therefore at N = m ,  F, ,=O [2] and the field A,, become a 
pure gauge. If it is represented as A,, = U-'J,U, we get the action (1). 

To obtain the proof of the equivalence, let us consider the generating functional 
for correlation functions Z , ( K )  of the bosonic theory. The constrained model ( l ) ,  (3) 
remains invariant under the gauge right-hand transformation (2) with h(x+, 0) = 
h(0, x-) = I, and we have 

Z , ( K ) =  DUS+[U]S_[U]S[L-]exp i S ( U ) +  d2xKq5(U) (7) I ( (  I 1) 
where 

ti+[ U ]  =n  a( u(x+, 0) - r )  

S_[ U ]  = n ~ S( U(0,  x-) - 1) 

SLL-] = n s ( L : ( ~ ) ) .  

f 
I 

r 

1.0 

The Lf  = L.: - Lf are the gauge fixing functions, and K = K ( x )  is an external source. 
The function + ( U )  is supposed to be a gauge invariant. 

It is easily verified [2] that Z , ( K )  (7) can be obtained at the N + m  limit of the 
following functional integral 

Z,(K)= D U  DCl S+[ U]S- [ClU]S[L- ]  

S(U)-iNT(Cl)+ d7x(fAlM:L<+K$(U)))) I 
I 
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where M ;  are defined by the decomposition 

u - ' ( n - ' a + n ) u =  M:i-,+M:r. J, = a, f J,  

and 

Here, the last term is the Wess-Zumino one. 
Let us change the integration variables from ( C L ,  U )  to (A+,A-): 

The corresponding Jacobian is a constant [3] and we have1 

Z , ( K ) =  DA,S[A_]exp (9)  I 

I 

where S(A,) is given by (6). To prove (8) and (9) equivalence we use the fact that 
tr log 0= -ii-(n) for A+ = K'J,~,  A- = 0 [2]. 

Introducing fermion variables one can rewrite & ( K )  as 

Z , ( K ) =  D$D&DA,S[A-]exp 

where S($, & A,) is given by (5).  Notice, that this functional integral contains the 
&function 

iJ{-+h,AL = 0 (10) 

which appears after the integration over A:. Integrating then over A!, we get at last 

Z , ( K ) =  D$D&DA;exp I 
where DAE=rI , .  dAz(x) S(A'?(x)), and S($ ,  & A i )  is the fermionic action (4). In 
the source term A' is replaced by -iA'J,- and, due to the condition A'? = 0, it depends 
effectively on the fermion variables only. 

The formulae (8) and (10) enable us to express the boson variables as (non-local) 
functions of the fermion ones. For example, forthe (constrained) model of the principal 
chiral field we have 

where a, p = 1,. . , , dim G, f =  1 , .  . . , W .  Similar fermionization relations can be 
obtained for the r-models on the other symmetric [ 5 ]  and homogeneous spaces. 

t We do not keep track of constant factors in front of Z , ( K ) .  
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The symmetric models are the most interesting among the u-models ( I ) .  Almost 
all of them are solvable. Their S-matrices can be found explicitly [6-10] by the method 
based on the S-matrix factorization. What can by said about the corresponding 
fermionic models with a finite flavour number N ?  In [2, 11, 121 the Bethe Anzatz 
solutions of the N-flavour Thirring models corresponding to the principal chiral models 
were obtained. The N-flavour fermionic models (4), corresponding to the other sym- 
metric ones, can be supposed solvable as well. If this were the case, we should get a 
new class of solvable two-dimensional modes. 

I wish to thank I V Tyutin for useful discussions 
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